Heat Transfer in Food Processing

WIT PRESS
WIT Press publishes leading books in Science and Technology. Visit our website for the current list of titles.
www.witpress.com

WIT eLibrary
Home of the Transactions of the Wessex Institute, the WIT electronic-library provides the international scientific community with immediate and permanent access to individual papers presented at WIT conferences. Visit the WIT eLibrary at http://library.witpress.com
Objectives

The Developments in Heat Transfer book Series publishes state-of-the-art books and provides valuable contributions to the literature in the field of heat transfer. The overall aim of the Series is to bring to the attention of the international community recent advances in heat transfer by authors in academic research and the engineering industry.

Research and development in heat transfer is of significant importance to many branches of technology, not least in energy technology. Developments include new, efficient heat exchangers, novel heat transfer equipment as well as the introduction of systems of heat exchangers in industrial processes. Application areas include heat recovery in the chemical and process industries, and buildings and dwelling houses where heat transfer plays a major role. Heat exchange combined with heat storage is also a methodology for improving the energy efficiency in industry, while cooling in gas turbine systems and combustion engines is another important area of heat transfer research.

To progress developments within the field both basic and applied research is needed. Advances in numerical solution methods of partial differential equations, high-speed, efficient and cheap computers, advanced experimental methods using LDV (laser-doppler-velocimetry), PIV (particle-image-velocimetry) and image processing of thermal pictures of liquid crystals, have all led to dramatic advances during recent years in the solution and investigation of complex problems within the field.

The aims of the Series are achieved by contributions to the volumes from invited authors only. This is backed by an internationally recognised Editorial Board for the Series who represent much of the active research worldwide. Volumes planned for the series include the following topics: Compact Heat Exchangers, Engineering Heat Transfer Phenomena, Fins and Fin Systems, Condensation, Materials Processing, Gas Turbine Cooling, Electronics Cooling, Combustion-Related Heat Transfer, Heat Transfer in Gas-Solid Flows, Thermal Radiation, the Boundary Element Method in Heat Transfer, Phase Change Problems, Heat Transfer in Micro-Devices, Plate-and-Frame Heat Exchangers, Turbulent Convective Heat Transfer in Ducts, Enhancement of Heat Transfer and other selected topics.
Series Editor

B. Sundén
Lund Institute of Technology
Box 118
22100 Lund
Sweden

Associate Editors

E. Blums
Latvian Academy of Sciences
Latvia

P. J. Heggs
UMIST
UK

C. A. Brebbia
Wessex Institute of Technology
UK

C. Herman
John Hopkins University
USA

G. Comini
University of Udine
Italy

D. B. Ingham
University of Leeds
UK

R. M. Cotta
COPPE/UFRJ,
Brazil

Y. Jaluria
Rutgers University
USA

L. De Biase
University of Milan
Italy

S. Kotake
University of Tokyo
Japan

G. De Mey
University of Ghent
Belgium

D. B. Murray
Trinity College Dublin
Ireland

S. del Guidice
University of Udine
Italy

K. Onishi
Ibaraki University
Japan

M. Faghri
University of Rhode Island
USA

P. H. Oosthuizen
Queen’s University Kingston
Canada
W. Roetzel
Universtaet der Bundeswehr
Germany

B. Sarler
Nova Gorica Polytechnic
Slovenia

A.C.M. Sousa
University of New Brunswick
Canada

J. Szmyd
University of Mining and Metallurgy
Poland

E. Van den Bulck
Katholieke Universiteit Leuven
Belgium

S. Yanniotis
Agricultural University of Athens
Greece

D.B. Spalding
CHAM
UK
Contents

Preface xi

Chapter 1
Numerical modelling of heat transfer in the food industry – recent developments and applications 1
K. Sardi & S. Yanniotis
1 Introduction 1
2 Finite difference (FD) methods 3
 2.1 FD approaches by Taylor series expansion 5
 2.2 FD approaches by energy balance 8
 2.3 Limitations of the FD approach 9
3 Finite element (FE) methods 9
4 Finite volume (FV) methods 15
5 Computational fluid dynamics (CFD) 17
 5.1 Single-phase flow problems 22
 5.2 Two-phase flow problems 24
6 Conclusions and outlook 26

Chapter 2
Neural network applications in heat and mass transfer operations in food processing 39
C.R. Chen, H.S. Ramaswamy & M. Marcotte
1 Introduction 39
2 Principles of a basic artificial neural network (ANN) model 41
 2.1 Neural network architecture 42
 2.2 Artificial neurons 43
 2.3 Learning rules 44
 2.4 Advantages and limitations of neural networks 45
3 Developing neural networks 46
4 ANN applications in heat and mass transfer operations 48
 4.1 Predictions 48
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2 Optimization</td>
<td>49</td>
</tr>
<tr>
<td>4.3 Control</td>
<td>49</td>
</tr>
<tr>
<td>4.4 Selected ANN examples in heat and mass transfer applications</td>
<td>49</td>
</tr>
<tr>
<td>5 Future trends</td>
<td>56</td>
</tr>
</tbody>
</table>

Chapter 3

Freezing and thawing of foods – computation methods and thermal properties correlation

H. Schwartzberg, R.P. Singh & A. Sarkar

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Engineering calculations</td>
<td>61</td>
</tr>
<tr>
<td>2 Freezing points</td>
<td>61</td>
</tr>
<tr>
<td>2.1 Freezing point depression</td>
<td>62</td>
</tr>
<tr>
<td>2.2 Bound water</td>
<td>62</td>
</tr>
<tr>
<td>3 Water and ice weight fractions</td>
<td>63</td>
</tr>
<tr>
<td>4 Effective heat capacities</td>
<td>64</td>
</tr>
<tr>
<td>5 Enthalpies</td>
<td>65</td>
</tr>
<tr>
<td>5.1 Use of T_s as T_R</td>
<td>66</td>
</tr>
<tr>
<td>5.2 Use of $-40^\circ C$ as T_R</td>
<td>66</td>
</tr>
<tr>
<td>6 Departures from equilibrium</td>
<td>67</td>
</tr>
<tr>
<td>7 Volume changes</td>
<td>68</td>
</tr>
<tr>
<td>8 Food composition variation</td>
<td>68</td>
</tr>
<tr>
<td>9 Thermal conductivity</td>
<td>69</td>
</tr>
<tr>
<td>10 Freezing time estimation</td>
<td>70</td>
</tr>
<tr>
<td>10.1 Thawing-time estimation</td>
<td>71</td>
</tr>
<tr>
<td>10.2 Precooling and subcooling</td>
<td>71</td>
</tr>
<tr>
<td>11 Heat transfer coefficients</td>
<td>72</td>
</tr>
<tr>
<td>12 Unsteady-state freezing and thawing</td>
<td>72</td>
</tr>
<tr>
<td>13 Explicit numerical solution of PDE</td>
<td>73</td>
</tr>
<tr>
<td>14 Implicit numerical solution of PDE</td>
<td>74</td>
</tr>
<tr>
<td>15 Lee’s method</td>
<td>75</td>
</tr>
<tr>
<td>16 Enthalpy step method</td>
<td>75</td>
</tr>
<tr>
<td>16.1 Sample results for the enthalpy step method</td>
<td>76</td>
</tr>
<tr>
<td>17 Multidimensional problems</td>
<td>78</td>
</tr>
<tr>
<td>17.1 Enthalpy step method</td>
<td>78</td>
</tr>
<tr>
<td>17.2 Explicit, temperature step method</td>
<td>82</td>
</tr>
<tr>
<td>17.3 Alternating-direction implicit (ADI) methods</td>
<td>82</td>
</tr>
<tr>
<td>18 Irregular shape and nonuniform composition</td>
<td>83</td>
</tr>
<tr>
<td>18.1 Coordinate transformation</td>
<td>83</td>
</tr>
<tr>
<td>18.2 Finite element method</td>
<td>83</td>
</tr>
</tbody>
</table>
Chapter 4
Microwave and radio frequency in sterilization and pasteurization applications

1 Introduction .. 102
2 Basic principles of microwave and RF heating .. 103
 2.1 Mechanisms of microwave and RF heating 103
 2.2 Frequencies allocated for industrial heating applications 104
 2.3 Governing equations for electromagnetic waves 106
 2.4 Electromagnetic wave propagation ... 107
 2.5 Penetration depth of microwave and RF waves in foods 111
 2.6 Effect of temperature on food dielectric properties 112
3 Microwave and RF heating systems ... 115
 3.1 Microwave heating systems ... 115
 3.2 RF heating systems .. 119
4 Review of research and industrial applications .. 123
 4.1 Microwave sterilization.. 123
 4.2 Microwave pasteurization ... 126
 4.3 RF heating .. 127
 4.4 Bacterial considerations .. 130
 4.5 Effect of microwaves on chemical reactions........................... 133
5 New developments in microwave and RF sterilization research.............. 134
 5.1 Chemical marker methods.. 134
 5.2 Fiber optic sensors .. 139
 5.3 Computer simulation ... 142

Chapter 5
Ohmic heating: models and measurements

1 Introduction .. 159
2 The fundamentals of ohmic heating ... 160
3 Commercial design of the ohmic process ... 161
4 Modelling ohmic heating.. 162
 4.1 Modelling approaches .. 162
 4.2 Development of modelling approaches 169
5 Experimental studies on ohmic heating .. 170
 5.1 Measurement of electrical conductivity 170
 5.2 Experimental measurements .. 172
 5.3 Specification of correct electrodes and measurement methods 173
6 Applications of ohmic heating and electric fields 175
 6.1 Microbial destruction ... 175
 6.2 Mass transfer enhancement ... 176
 6.3 Ohmic pretreatment ... 178
7 Conclusions .. 180
Preface

Heat transfer is one of the most important and most common engineering disciplines in food processing. There are many unit operations in the food industry where steady or unsteady state heat transfer is taking place e.g. sterilization, dehydration, freezing etc. Heat transfer in these operations is of primary importance and affects the design of equipment as well as safety, nutritional and sensory aspects of the product.

In applying heat transfer knowledge to food processing, one must take into account that the food industry usually deals with difficult raw materials with irregular shapes, in many cases of non-uniform and variable consistency, with physical properties that may change during processing. Due to these complexities, the unsteady state heat transfer differential equations can only be solved analytically with several simplifying assumptions, while numerical solutions of these equations can handle such complexities.

The chapters in this book deal mainly with heat transfer applications or methods that have considerable physical property variations with temperature, e.g. freezing, or methods that are not yet widely spread in the food industry, e.g. ohmic heating, infrared radiation, or are less developed in the food engineering literature, e.g. deep-fat frying or baking. The application of numerical methods has received special attention with a separate chapter as well as emphasis in almost every chapter because a substantial number of papers in food processing operations have been published in recent years dealing with numerical solutions of heat transfer problems. It is expected that because of the increased computational capabilities that are possible today with high speed and low price computers, numerical solutions will be used in an increasing range of food processing applications in the near future. A chapter on artificial neural networks (ANN) has been included since ANN is a promising alternative tool to conventional methods for modelling, optimization etc in cases where a clear relationship between the variables is not known or the system is too complex to be modelled with conventional mathematical methods.

We would like to thank the authors for their contributions. Without their effort and expertise this book would not have been possible.

The Editors
2007